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Abstract

This paper describes an experimental computer program that could serve as one component of a computer
vision system. The program is an artificial neural network learning machine implemented as a committee network
of threshold logic units to function as a trainable pattern recognizer for visual images composed of a rectangular
array of pixels. Each pixel contains a single number representing the gray scale value of that region of the field of
view.

Introduction
A robot vision system consists of many components:

Image capture, usually with a video camera, charge coupled device, laser or microwave radar, scanning sonar, etc.,
in which the image is converted from light or other radiation to an analog electrical signal;

Image digitization and signal processing, in which the image is divided into a set of picture elements, or pixels,
each of which is assigned a value representing the brightness, color, etc. of that part of the image;

Region, edge, and boundary detection, in which the distinct visual elements of the image are separated;

Image scaling and alignment, in which the digitized image is rotated, translated, and otherwise transformed to
place it into some standard position and size; and

Image recognition, in which the preprocessed image is submitted to a pattern recognition algorithm to allow the
robot to categorize it, that is, recognize what the image represents.

Only the last of these problems will be considered in this paper.

Neurophysiology

SILOAM operates by modeling on the computer one possible organization of the actual neural structure of the brain.
Consider a single nerve cell (figure 1). During World War II, a physiologist and a mathematician worked together
to try to create a model of the brain based on anatomical and physiological experimental findings. The team of
McCulloch and Pitts started by modeling the single nerve cell, or neuron. Their model is known today as the
”McCulloch-Pitts neuron” (figure 2).

Microscopic studies reveal that the nerve cell is composed of a cell body, or cyton, many input fibers, or dendrites,
and a single output fiber, or axon, which branches to send signals to the dendrites of other nerve cells. Physiological
studies that selectively stimulate sets of dendrites while observing the axon yield the following result: some dendrites
excite the neuron to produce an output (we say the neuron ”fires”), and other dendrites inhibit the firing.

The cell either fires or does not fire. There is not any specific tie between which inhibitory input cancels an
exitory input. Each input has a ”weighting factor” associated with it: excitory inputs have a positive weight, and
inhibitory inputs have a negative weight. The neuron, supposedly in the cyton, combines all these inputs to produce
the output. Thus it appears that the neuron adds up all the weights associated with inputs that are stimulated, and
if the result exceeds a certain threshold then the neuron fires.

*Mr. Brown is a computer scientist involved in the design of electronic survieliance, intercept, and cryptography systems, robotics,
avionics, medical equipment, and artificial intelligence systems. He holds a BA in mathematics from Dowling College, and is a working
on an MS in mathematics from Florida Atlantic University.
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Threshold Logic

This model of a neuron is referred to as a threshold logic unit, or more simply TLU (figure 3). It is not difficult
to construct a TLU out of readily available hardware components: a Schmidt trigger connected in series after
an operational amplifier wired to operate as an analog summer will suffice (figure 4). The weights are the gains
determined by the proportionality factors of the scaling resistors at the plus or minus inputs to the op-amp. Adjustable
weights may be realized by using potentiometers with the wiper connected to the stimulus input, with one end of
the resistance element connected to the plus input of the op-amp, and the other end connected to the minus input.
In the present case, we choose to simulate the operation of a TLU by software. It’s cheaper, and as we shall see, it
allows the program to adjust its own weighting factors. This is necessary if the TLU is to be automatically trained,
rather than ”tweaked” into alignment by a skilled technician.

The TLU is a physical embodiment of a linear equation formed by setting an inner product, or metric (measure
of distance), to zero. The solution set for the equation thus formed defines a cleaving plane that acts as the boundary
between two half-spaces in the weight space of all possible weight sets that could make up the weights for the input
of a TLU. The cleaving planes, being the solution to a homogeneous linear equation, must pass through the origin.
When the equality is changed to an inequality, the sign of the inequality indicates on which side of the cleaving plane
the weight point lies.

SILOAM contains many TLU’s. Each has m times n inputs to ”see” the m by n image array we shall present to
it. In addition, each TLU has an additional input which is always excited. This extra input provides a "reference
point” or "bias” (analogous to the DC component of a Fourier series) to set the threshold that determines the firing
point of the TLU. This input is necessary to homogenize the linear equation formed by the inner product used to
compute the metric. Without it, an input of all zeros would be degenerate, and the training algorithm would fail to
converge.

Pattern-Space Geometry

The task of computing the output of a TLU is performed by the vector operation of taking the ”dot product” of
the stimulus vector and the weight vector associated with the TLU. The sign of the result determines the output:
positive sign means the nerve has fired, negative means it hasn’t. Each weight vector may be interpreted as a point
in hyperspace, or weight space. If we look at the dot product formed between the input pattern vector and the
TLU weight vector, we see that if the elements of the pattern vector are viewed as constants, and the weight vector
elements are viewed as a variables, then if the dot product is set equal to zero, this dot product forms a linear
homogeneous equation. The situation in 3-space is:

Az 4+ By+Cz=0

A, B, and C are the components of the weight vector, and z, y, and 2z are the components of the pattern to be
recognized. Remember that z is set to a constant value of one. The solution set defines a plane that passes through
the origin (figure 5). The plane forms a pattern surface which cleaves weight space into 2 half-spaces: this places one
set of possible TLU weights on one side of the pattern plane and one set on the other side. Any given weight point
will be on either the negative or the positive side of the pattern plane. (The two’s complement arithmetic of the
computer makes it convenient to consider a point lying on the plane itself to be on the positive side of the plane.)

The absolute value of the dot product is proportional to the perpindicular distance from the weight point to the
pattern plane. Thus a given pattern hyperplane divides weight hyperspace into 2 half-hyperspaces. The dot product
of the pattern vector with the weight point returns the distance from the weight point to the pattern plane. These
weight points are defined by the weights for each of the inputs to the TLU; the coordinates of the weight point are
just the values of the weights for the TLU.

By this convention, we may visualize each TLU as being represented by a point in this weight space. The dot
product of the weight point with the augmented pattern vector is the perpendicular distance from the weight point
to the pattern plane. If this quantity is positive, then the TLU ”recognizes” the pattern; if it is negative, then it
does not recognize it (figure 6).

The TLU is a pattern dichotomizer: its corresponding weight point in weight space is on the positive side of some
pattern hyperplanes, and on the negative side of the other pattern hyperplanes. Thus it divides all pattern planes
in weight space into 2 classes or sets: those it is on the positive side of, which it recognizes, and those it is on the
negative side of, which it does not recognize.

Artificial Neural Networks

Now, how about more difficult cases, where a simple linear function cannot separate the categories? We will first
explore a ”yes/no” decision from a single network. We will use one possible network of TLU’s, called the committee
network (figure 7). The committee network is a type of layered machine. A committee of TLU’s is composed of
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an odd number of TLU’s, each presented with the same input pattern vector. Each TLU in the committee decides
whether the pattern is one that it recognizes, and casts a vote accordingly. Then a chairman TLU counts the votes.
The chairman’s inputs are the outputs of the committee members. It’s weights are fixed at 1 for all of its inputs, so
it simply functions as a vote counter for the rest of the committee. By training multiple networks independently, we
may increase the number of recognizable classes to any power of 2 (figure 8).

We have developed a democratic machine: how can such a thing work? We can show how a democratic committee
with a majority rule voting system can make a substantial improvement in our pattern recognizer. The divisions
formed by each of the TLU’s in our committee can occur at different places. Through proper training (to be described
later), the voting TLU’s in the committee can be made to form point clusters in weight space such that a majority
of TLU weight points will always be on the proper side of every presented pattern hyperplane (figure 9). Thus we
can select the weight points such that a majority of TLU’s will vote ”yes”, and this defines the set of patterns that
the committee as a whole will recognize.

To train such a committee, we present it with a pattern vector and observe the result. If the committee returns
the correct answer, we present another pattern; if not, we must correct it. This is done by adjusting the weights to
produce a more favorable vote (somewhat equivalent to lobbying in legislative processes, where the TLU plays the
part of the politician). This does not insure that the correct decision will be obtained the next time the committee
sees this pattern, but the vote will be closer. Since we insist on an odd number of TLU’s in a committee (exclusive
of the chairman), we can never have a tie. What we do is convert one TLU at a time to a more ”enlightened” view.
By repeating this process enough, the committee will return a favorable decision. When this occurs, we say that the
network has been trained to recognize the pattern.

The Training Algorithm

How do we go about finding the correct TLU to adjust, and how do we perform the adjustment? We pick that TLU
which voted wrong which was the least sure of his vote. This means that we pick the TLU that had the wrong sign
for its dot product, but the magnitude of the dot product was the minimum of all the TLU’s with the wrong output.
This corresponds to selecting the weight point closest to the pattern hyperplane, but on the wrong side of it. Now we
know which TLU to work on, but how do we adjust the weights to produce the desired effect? We move the weight
point for the selected TLU along the perpendicular from the weight point to the pattern hyperplane, towards the
pattern hyperplane, through to the other side of the pattern hyperplane, thereby changing the TLU’s classification
of the pattern.

We actually move the weight point by an amount determined by a constant, the correction fraction, times the
distance from the weight point to the pattern hyperplane. This constant must lie between 1 and 2 for the training
algorithm to converge (figure 10). If it is greater than 1, then the weight point will move to the other side of the
pattern hyperplane; if it is less than 1, then the weight point will move towards the pattern hyperplane, but not
through it. In this case, the training algorithm will not converge and training will never be accomplished because
the weight point will always be on the wrong side of the pattern plane even though it gets constantly closer to it.
This technique is called fractional correction. If the distance moved is the least integer such that the pattern plane
will be crossed, this choice results in a training strategy known as absolute correction. The simplest technique is
constant correction, where a constant distance is always moved. Such strategies allow for the use of integer arithmetic
resulting in faster execution and simpler hardware.

Fixed increment correction with binary images using 8-bit signed integer weights lends itself to cheap parallelism.
A separate Intel 80C51 microcomputer on a chip could be used for each TLU, taking weight points out of an array
in on-board ROM. Using 6 committees of 7 voting TLUs each, plus a single 80C51 to count all the votes and act as
central control results in 6%7+1=43 80C51 processor chips. These microcomputer chips cost less than three dollars
in quantity. A system such as this should be able to perform real-time optical text scanning of printed literature.
Using surface mount or hybrid packaging methods, the device should be as portable as a walkman radio. A speech
synthesizer could serve as an output device, receiving ASCII text from the pattern recognizer. Voila! A reading
device for the visually handicapped. To this end, the performance of an 8-bit integer network with fixed increment
correction has been examined with encouraging results. The TMS-320 series of digital signal processors from Texas
Instruments may prove less expensive than the 8051 array. Although the 320 is more expensive, it is much faster
than the 8051, and the overall system cost may be less.

The Experiment

The SILOAM source file (Listing 1) is heavily commented, and should be easily understood when read in conjunction
with this article. It was written with flexibility, portablilty, and readability in mind. There are actually 3 versions
of SILOAM, a floating point version, a 16 bit integer version, and an 8 bit integer version. The symbol ELTYPE is
defined on the compiler invocation line, and determines the type definition for an element of a weight point vector.
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The pattern presentation order for training is selectable by the -o option. Initial conditions for the weight points are
selected by the -r option. The correction method is selectable by the -a, -i, and -f options, which specify absolute,
fixed increment, or fractional correction. The level of detail for logging is selectable by the -1 option: -10 displays
only final results, -13 displays the most detail.

The program has been run on a small pattern file, representing a binary image of each of the numbers 0 thru
9 (Listing 2). It has also been successfully taught the entire uppercase alphabet. The alphabet pattern file was
generated by rasterizing characters from the Hershey character database of the National Bureau of Standards. The
entire ASCII character set was generated in this fashion as a high resolution dot matrix raster, and was taught to
SILOAM. An example of a character image from this file is shown (Listing 3). The output produced by a run of the
program is shown (Listing 4).

It is interesting to observe that all of the binary images of the character sets could be learned by a network of
only one TLU per committee. When this is the case, the pattern set is said to be ”linearly seperable”. A pattern
file of random analog pixel values was generated, comprising 100 images. In this case, a single TLU could not learn
the pattern set. Three TLUs were required, and different training methods produced radically differnt results. Fixed
increment performed quite poorly. Absolute correction did somewhat better, but fractional correction did the best.
Values of the correction fraction closer to 2 seemed to perform better and resulted in faster convergence. In fact,
convergence was even achieved with values above 2, although when they got up to about 2.5, convergence failed.

SILOAM will actually get confused and forget things it has already learned in the process of trying to learn
new things. This is similar to what every teacher or parent knows about the learning phenomenon in children. It is
shown in Nilsson’s book, however, that the training procedure will converge to the desired result, given that a suitable
distance to move the weight point is chosen, and that the capacity of the machine (related to the number of TLUs
per committee and the number of patterns to be recognized) is not exceeded. This is known as the Fundamental
Training Theorem, or the Perceptron Convergence Theorem.

Despite the impressive performance of this simple network, it has some serious theoretical shortcomings. It cannot
learn a simple exclusive OR function. That the network is deficient can be shown with a geometric proof. Since
there are 2 variables input to an XOR, a 2 by 1 input pattern is needed. This results in 3 dimensions for the pattern
space. Since there are 4 combinations of the inputs, there are four pattern planes. All four planes pass through the
origin. If a sphere is imagined about the origin, these 4 planes intersect the sphere in 4 great circles. These 4 circles
each intersect each other. If the south pole of the sphere is placed on the origin of a 2 dimensional graph, and the
surface of the sphere projected onto the plane, as in a polar projection of the globe, 4 intersecting circles result, one
centered in each quadrant of the plane. Their common intersection is around the origin of the graph. If we count the
number of distinct regions these circles divide the plane into, we get 14, but there are 16 possible combinations of
accepting and rejecting 4 distinct patterns composed of 2 independent variables. The exclusive OR and the exclusive
NOR, or equivalence relation, are these missing regions. A similar argument in higher dimensions can be used to
show that all such networks are likewise deficient in not being able to learn all possible pattern sets that they could
be confronted with.

Rumelhart and McCleland show, however, that other network topologies, neural activation functions, and training
algorithms, especially the gradient descent training method, are capable of producing all possible boolean switching
functions. Their book is highly recommended for anyone interested in persuing the study of artificial neural networks
in depth.

Topics for Further Investigation

One idea that needs to be explored is recognizing patterns over time, that is, sequences of patterns. One idea might
be to incorporate some sort of feedback into the network to provide a memory capability. The output bit vector
could be concatenated with the pattern input vector to provide an input to the network that was a function not only
of the current input, but also of the previous output.

Additional exploration needs to be done with non-binary pattern elements. Remember that the recognition
process does not require the elements of the pattern vector to be ones and zeroes; any real values will still satisfy the
vector geometrical constraints and should be recognizable with essentially the same algorithm.

Geoffrey Hinton discussed some of his work with artificial neural networks at the AAAI-86 conference in Philadel-
phia last August. He showed how a real-valued, differentiable activation function could be trained by the method of
gradient backflow to form its own independently developed internal abstractions. His experiment involved learning
two similar family trees. The network formed, on its own and without being taught explicitly by the examples, the
abstract concepts of generation and various family relations. It was also able to generalize its experience to determine
the relations between individuals it had not been previously introduced to. It got better than 3 out of 4 new problems
correct. Hinton shows that a statistical correlating recognizer would fail this test, and that true generalization of
induced abstractions is being performed.
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Neurophysiology Revisited

What can we learn about the natural mind based on our model neural network? Psychiatrists treat mental illness
with drugs such as phenathiazines and lithium, and electroshock therapy. Electroshock therapy is assumed to destroy
connections, thereby altering weights by setting them to zero. Phenathiazines affect the release of neurotransmitters
such as seratonin, norepinephrine, and dopamine. A change in these would have the same effect as altering the
weights at the inputs to the neuron. Lithium is metabolized by the body’s electrochemistry in the same manner as
sodium, but behaves differently in nerve conduction and firing potential. Thus lithium acts as an inert place holder
for the neuroactive sodium in the sodium-potasium complex. The presence of lithium would affect the threshold of
the neuron, but this is just another weight in our model. Thus these psychoactive drugs are trying to counteract a
medical problem that is manifested in a perterbation of the weights of the neuron. If the drugs are under prescribed,
the desired effect will not be achieved, and if they are overprescribed, the wieghts may be totally scrambled, resulting
in a worsening of symptoms.

Hardware Implementations

Recently, threshold logic has been receiving a lot of attention from the press. The front page of the Electronic
Engineering Times carried an article on February 3, 1986, titled ”Neural research yields computer that can learn”
that described research into a speech learning program based on Hopfield networks that apparently makes use of
time feedback techniques similar to those outlined above.

The very next week an article appeared in the same publication that touted threshold logic as the key to optical
computers. This article gave some details on how electro- optical technology can implement threshold logic gates with
an enormous number of inputs. The week after that, an article appeared giving details of a Gallium Arsenide TLU
that uses the analog addition of the brightness of lightwaves to perform the summing operation, so that the device
is essentially a threshold detector with a photo-resistor for an input. This TLU implementation does not increase
in complexity no matter how many inputs it recieves: they are just lights shining on its single photo-resistor. The
output of this device is a single solid state laser. This last article also described a holographic optical interconnect
scheme that is very interesting. The output lasers reflect off of a hologram placed over the chip. The hologram acts
as a phased array reflector that directs each output laser’s light only to those photo-resistors that are supposed to
be connected to that output. In this way, the logic signals travel at the speed of light without wasting any chip real
estate on signal interconnect lines. The logic may now be placed closer together, and a three dimensional medium is
available for interconnect wiring instead of the two dimensional masks of current day chips. Gallium Arsenide chips
are available in production today that operate at speeds of 20 GHz. With more closely spaced circuits, and more
flexible design rules for interconnects, a tremendous increase in speed should be shown by these new devices.

This kind of hardware is just what is needed to take these learning systems from the several seconds per iteration
speed zone into the picoseconds per iteration arena. We may certainly expect to see more of threshold logic learning
systems in the future if this hardware implementation effort succeeds.
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Program Source Code

The original program was written in 1985 and 1986. That makes it paleolithic C. This version has been cleaned up
?just enough” to make it work on gcc with Red Hat Linux 8.0

#define PGM_ID "SILOAM Gnu gcc version for Linux 10/24/97"

R
* An Adaptive Template Matching Image Categorizer

* This Is An Experimental Computer Vision Program
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L3
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* y
*
K L et e e e e e et et e e e
L3
* This program implements a trainable pattern classifier as
* a committee network of threshold logic units. It learms to
* recognize patterns by being trained from a set of prototype
* patterns presented in a training file. The training file is
* organized as a set of visual images represented as an orthogonal
* array of picture elements, or pixels. Each pixel is a number
* representing the gray-scale value of that point in the image.
* Associated with each pattern is a number, or tag, that represents
* the category to which that pattern belongs.
L3
T T T T T T T T T
*/
f K e e e e e e

¥ X X X X X ¥ ¥ ¥ ¥ ¥ ¥ X X X ¥ ¥ X X X ¥ *x x

*

* X X X X X X ¥ ¥ X X X ¥ ¥ X ¥ ¥ *

Written: During the period 1975 thru 1986,

in BASIC, FORTRAN, and C,
on various computers including
PDP-11/35, PDP-11/45,
8080, 8085, and Z-80 CP/M 2.2 machines,
8086, 8087, 8088, 80186, 80286, 80287,
IBM-PC, XT, and AT and Clones.

This program is an on-going experiment.

By: R. J. Brown
Elijah Laboratories Inc.
P. 0. Box 833
Warsaw KY 41095
1 606 567-4613

Ownership: I hereby place this program in the public domain.

System: Samsung 8 MHz 80286 IBM-PC/AT clone
with 80287, DOS 3.3

Compiler: Microsoft C Version 5.0

"And as Jesus passed by, he saw a man which was BLIND from

his birth... And said unto him, Go, wash in the pool of
Siloam... He went his way therefore, and washed, and came
SEEING."

John 9:1-7

"Train up a child in the way he should go: and when he is
old, he will not depart from it."
Proverbs 22:6

"And God said, let us make man in our image, after our
likeness."
Genesis 1:26

"Thou shalt not make a machine in the image of man."
Frank Herbert -- Dune
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/************************************************************************

%

* Operating System Interface
%

************************************************************************/

/* #include <sys/types.h> x/

#include <stdio.h> /* needed for stream input/output
#include <math.h>/* for square root routine */
#include <time.h> /* for getting current time of day

#define index strchr /* ANSI name for MicroSoft C ver 5.0 */

*/

*/

/************************************************************************

%

* Type Definitions & #define’s
L3

************************************************************************/

#define FALSE 0 /* boolean constant for ’false’
##define TRUE 'FALSE /* boolean constant for ’true’
#define void /* function that returns no value

#define forall(index,limit)\
for((index)=0; (index)<(limit) ; (index)++) /* looping word */

#define kase(id,stmt) \
case(id): { \
stmt; \
break; \
} /* shorthand form for case statement */

#define u(x) ((unsigned) (x)) /* shorthand for ’(unsigned)’ cast
typedef unsigned char byte; /* an 8-bit byte of storage
typedef unsigned int  word; /* a 16-bit word of storage
typedef word boolean; /* a decision variable,

* ’true’ or ’false value only

*/
typedef ELTYPE element; /* an element is a real number
typedef DOTYPE DOT; /* type of a dot product may be bigger! */
typedef element  *vector; /* a vector is a set of elements
typedef vector tlu; /* a tlu is a vector
typedef struct { /* the collection of
tlu *wtpt; /* a set of tlu weight points, x/
DOT *xdot ; /* and dot product save cells x/
} committee; /* is a committee */

typedef char *pointer; /* a general pointer to whatever...

*/
*/

*/

*/

*/
*/

*/

*/

*/

*/

*/
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*
* Global Variable Definitions
*
S K K K K K KKK K KKK Kok ok o oo o o o o ok K K Kok Kok ok ok ok ok o o o o o o K Kk kK sk ok ok ok ok ok ok o o o o ok ok ok k ok /

FILE *pat, /* the input training pattern file x/
xfopen() ; /* the file opener x/
byte patname[64], /* ascii filename of input file x/
xindex () ; /* string search library function x/

int ncom, /* number of committees in the network */
patwide, /* pattern width in pixels */
pathite, /* pattern height in pixels */
pats_so_far, /* how many patterns in file so far */
pats_missed, /* how many patterns were mis-recognized so far */
missed, /* # of patterns missed on this pass x/
tlus_trained, /* how many tlu’s have been adjusted so far x/
npass, /* number of current pass thru pattern file x/
log_level, /* level of detail for run-time logging x/
dim, /* number of elements in a vector (dimension) */
ntlu, /* number of tlus per committee x/
corr_incr, /* fixed increment correction constant */

*vote; /* pointer to vote count array x/
boolean goofed, /* mis-recognition indicator for training loop */
start_over, /* select start over on error training strategy */
absolute, /* flag for absolute correction training method */

*decsn, /* pointer to network’s decision array */

xclass; /* pointer to class (category) array */
DOT patmag; /* pattern magnitude (used for training) x/
element fraction, /* correction fraction for training x/
maxel=0; /* maximum element in a weight point */
radius; /* average radius (distance from origin)

* of tlu weight point at initialization

*/
vector pattern; /* pointer to current input pattern */
committee *net; /* pointer to network as an array of committees */

ek sk sk o o ok ok ok sk sk o s o ok sk sk o o ok ok sk s s o sk sk s ok ks s o ok sk o o ok sk o o ok ks sk o ok ok sk s s o sk sk sk o ok sk o s ok k ok ok
L3
* Library Routines
*
ok e o o e ok sk s oo o koo o e sk o e ok sk o o ok sk s o o ke o ok sk e ok sk o ok sk o e ok sk o e ok s sk e ks ok ok /

/*extern double sqrt(); /* square root library function */
/*extern pointer calloc();/* memory allocation library function */
/*extern long time(); /* benchmark timing routine x/

/] ek sk sk s o ok sk ok sk sk e s o ok sk sk o s ok ok sk o s o ok sk sk sk ok sk sk s s o ok sk sk o o ok sk o o ok ks sk o ok k sk s s e sk sk sk o ok sk e sk ok k ok ok
L3
* BANNER -- Display Program 1I.D.
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*
************************************************************************/

void banner() { /* display program identification information x/
printf ("\n%s",PGM_ID) ; /* Program Identification is #define’d

* at top of source file

*/

printf ("\nWritten by: R. J. Brown, Elijah Laboratories Intn’1");
printf ("\nThis program is in the Public Domain.\n");

33k 3k sk sk ke ok ook sk sk sk ke ook o ok sk Kk kK ko o ok ook sk ok sk ik ko o o o ok ok sk 3k ak Kk ke ke o o o ok sk ok sk k ke k ko o ok ok ok ok ok ok kK
*
* HELP Display Screen
*
sk ke ke o ok sk kK ko ook ok 3k kK k3 o o o o ok ok kK K Kk o ok o ook sk sk sk sk K K kK o o o o ok sk sk ok Kk K 3 o o ok ok ok ok ok kK K kK ok o ok ok ok /

void help() { /* some user friendly help for the uninitiated ! */
printf("Simple Image Learning On Adaptive Machinery\n");

printf ("An Adaptive Template Matching Image Categorizer\n");
printf ("\n");

printf (" R. J. Brown, Elijah Laboratories International\n");

printf (" 5150 W. Copans Rd. Suite 1135, Margate FL 33063\n");

printf ("\n");

printf ("usage: siloam <options> filename[.ext]\n\n");

printf ("where: filename -- is the input pattern file.\n\n");

printf ("options: -r##.# -- gives initialization radius.\n");

printf (" -t## -- gives number of TLUs per committee.\n");
printf (" -0 -- start over on error,\n\n");

printf ("choose one: -i## -- fixed increment correction, ## = incr.\n");
printf (" -a -- absolute correction.\n");

printf (" -f##.# -- fractional correction, ##.# is lambda.\n");
printf (" -1# -- logging level: O=least; 3=most.\n");

exit (0);

[ ok ko sk ok ok sk o sk ok o sk ok o sk ko ok o o sk o ok ok o sk ok o sk o sk o sk ok o sk o ok ok ok o ok ok o ko ok ok o sk ok o ok ko ok K o ok ok o ok
L3
* SIGN - The Sign 0f An Element +/-1
*
sk ko ok o o ok o o oK o ok o ok o o K K o ok o ok o o K ook ok o oK K o K K o o o o sk o ok o o sk ok o sk ok o ok ok o sk o o sk ok o ok o ok ok ok ok ok /

int sign(x) /* return the sign of a number as plus or minus one x/
element x; /* argument is an element x/
{
return( x<(element)0 ? -1  /x if number is negative, return -1 x/
1 );/* else return +1 */
}

/AR Kok ok o K ok o ok o kR ook o ok o o KR ok kR ok ok o o ko sk o sk sk ko kR ok ko ok sk sk ok o ok ko K ok ok K
*
* ISIGN -- The Sign 0f An Integer +/-1
*
SRR AR AR R oK R KR KKK K Kok K K KK KK K o KKK K o ok oK ok kK oo R ok K K kK ok
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int isign(x) /* return the sign of a number as plus or minus one x/
int x; /* argument is an integer x/
{
return( x<0 7 -1 /* if number is negative, return -1 x/
: 1) /* else return +1 */
}

/K% e ok ok sk ook sk e ok ok sk e ok sk sk ok sk kK 3 ook sk ok ok ok ok ok sk e ok sk ok s ok ok sk s ook sk e sk ok ok s ok sk ok 3 ok ok ok o ok sk k o ok ok ok k ok ok
*
* ABS - Absolute Value 0f An Element
*
sk ook sk e ok ok sk ook sk o ok ok o ok ok sk o ok sk ok sk e sk ok ok s ok sk ok ok sk ok e ok sk ko ok ok ok ok sk ok e ok sk o ok ok ke k ok ok ok ok ok ok k ok ok /

element eabs(x) /* the absolute value of an element */
element x; /* argument is an element x/
{
return( x<0 7 -x /* if number is negative, make it positive x/
S 4D /* else return it like it is */
}

330k ko koo koo ok o sk ok o ek ok sk sk o ok o sk o sk ek o sk sk o sk sk ook sk o e ko o ko o ok ok
L3
* TABS -- Absolute Value 0f An Integer
*
sk oo oo o sk o o e ks oo o e o s s e ko o ke o e o e o s sk e o e ks o ks o sk sk sk ok o /

int iabs(x) /* the absolute value of an integer */
int x; /* argument is an integer */
{

return( x<0 7 -x /* if number is negative, make it positive */
: X ), /* else return it like it is */
}

ek ks s o ok ok ok sk sk e s o ok sk sk e sk ok sk sk s sk o sk sk sk ok ks s s ok sk o ke ok sk s s ok ks sk ok ke ksl s s ke ek sk sk o ek sk e sk ok k sk ok
*
* ALPHA - Step Function
*
ok ks s o o e ok ok ks s s o sk sk sk o ke sk sk s s e ok sk s o s ok sk sk s s ok sk sk s ke ok sk sk ke ok ksl s o ok ok sk sk o ok ok ke sk e ok kak sk ke k sk sk ok /

int alpha(x) /* step function return zero or one */
int x; /* argument is an integer (in this program...) x/
{

return( x>0 7 1 /* if argument strictly positive, return one */
:0); /* else return zero x/
}

33k ko koo koo ok o sk ok o sk ok sk sk o ek o koo sk ek o sk o ok sk sk ook sk o e ko o ko o ok ok
L3
* MOVE -- String Move Function
*
sk oo s o sk o o e ks oo o e o s s e ko o ke o e o e o s ke e ko e ks sk o sk sk sk ok o /

char *move(src,dst) /* move a string returning ptr to end of result */
char *src,*dst; /* pointers to source & destination strings x/
{

while(0!=((*dst++)=(*src++))); /* copy bytes until end of source */

11
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return(--dst) ; /* return ptr to end of destination */

/] K3k ke sk o sk o sk o ko o ok sk ke ks o sk o ok sk sk o ko o ko o ks o sk o sk o o ks o ko o sk o ok sk s ok sk o ok ko o ok ok o ok ok o
*
* RADIUS STATISTICS -- Summary Info
*
sk ks o ksl o o sk o o ko o ksl ke ks s sk s ok sk sk sk o e ks e ks sk o e o ks ok ko ks ke ok sk sk sk s ok ko o ko sk ok /

void radius_statistics() { /* show how weight points are distributed x*/

element r, /* current radius accumulator */
xpe; /* pointer to current element */
float mu=0, /* mean of radii */
sigma=0; /* standard deviation of radii */
committee *pc=net; /* pointer to current committee x/
vector *pt; /* pointer to current tlu x/
int c, /* committee loop counter x/
t, /* tlu loop counter x/
e, /* element loop counter x/
n=ncom*ntlu; /* number of tlu’s altogether x/
forall(c,ncom) { /* for all committees... */
pt=pc++->wtpt; /* point to first tlu x/
forall(t,ntlu) { /* for all tlu’s... */
pe=*pt++; /* point to first element */
r=0.; /* initialize radius tally */
forall(e,dim) { /* for all elements... */
r+=(*pe) * (xpe) ; /* accumulate radius sqr’d */
pet+; /* point to next element */
}
mu+=sqrt ((float)r); /* accumulate sum of radii */
sigma+=(float)r; /* accumulate variance variable */
}
}
mu/=(float)n; /* divide to get overall average radius */
sigma-=mu*mu*n; /* compute variance x/
sigma=sqrt(sigma)/mu; /* compute standard deviation x/
printf ("\nmean of the radii: %f",mu); /* print statistical x/
printf ("\nstandard deviation: %f",sigma); /* summary of weight x/
printf ("\n"); /* point distribution  */
}

/] 3k sk sk sk ke o ook sk ok sk ke ook ook sk Kok K K 3 3 ok ook sk sk ok K Kk k3 o o ok ok ok ok Kok K Kk e o e ok ok sk ok sk Kk ok ko o ok ok ok ok ok kK K
*
* READ HEADER -- Read File Header
*
s e ok sk e ok ok ook o ok sk ko o sk o o sk sk sk e ok ko s ok ok K o sk ok ok e ok sk ko sk sk o ok sk k s e sk ok o ok ke ke ok ok k e ok ok ok ke ok ok /

void read_header() /* read training file header information x/

{

rewind (pat); /* rewind pattern file */
pats_so_far=0; /* reset pattern sequence counter x/

12
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fscanf (pat, /* header comes from pattern file  */

"hdr %d %d %d \n", /* header must start with ’hdr’
* then read header information
* composed of three numbers

*/

/* put this information into the following global variables */

&ncom, /* number of committees in network */
&patwide, /* pattern width in pixels x/
&pathite); /* pattern height in pixels x/

ek sk ok ok sk o ok sk sk ok ok ok s ook ok sk sk sk ok ok ok ok o o ok ook sk sk sk ks ke o o o ok ok sk sk sk ok ok ok k o o o ook sk ok sk ok ke ok ok e o ok sk ok ok sk ok ok ok
*
* RANDOM -- Randon Number Generator
*
sk ok ok ok ok sk sk ok ok o ok ok sk sk ok ok ok ok o ok ok ok ok sk sk sk ok ok ok o ok o ok ok sk sk sk sk sk ok ok ok o ok o ok ok sk sk sk sk sk ok ok o o o ok sk ok sk sk sk ok ok ok ok ok ok ok /

element random() { /* generate a uniformly distributed
*x random number from the open interval (0...1)

*/

return(rand () /16384.) ; /* return scaled random integer x/

/] K3k s ok sk sk ook sk e ok ok ok ook sk ok ok sk sk ok 3 ok sk sk 3 ok ok sk 3 3 ok ok sk e ok sk ok o ok ok sk e ook ko sk ok ok s ok sk ok 3 ok ok ok o ok sk ok o ok ok ok ok ok ok
*
* INIT VAL - Initial Element Value
%
st e ok sk e ok ok e ok s ook sk ke ook sk e o sk ok e sk sk ok e ok sk K ook ok e ok sk k3 e skl s o sk kK s e ok sk ko ok ok ek ok ok ok e ok sk ok ko ok ok /

element init_val(radius) /% generate init’l value for element a tlu */
element radius; /* the avarage radius of a weight point x/
{

return( /* return the */
(radius*sqrt(3.))/(sqrt((float)dim)) /* average weight value */
* (2.*random()-1) /* scaled randomly by a */

) /* uniform distribution */
}

ek ks o o ok ok ok sk sk o s o ok sk sk o o ok ok sk s s o ksl sk s ok ks s s o ok sk sk o o ok ke o o ok ke sk o ok ok sk s o o sk sk sk o ok sk o s ok k ok ok
*
* INITIALIZE - Allocate Storage, Etec.
£
ok sk s o o e ok sk ks s s o sk sk sk o ke sk sk s s ke ok sk s s s ok sk sk s s ok sk sk s e ok sk sk ke ok ksl s ok ok sk sk o ke ok ks sk ke ke k sk sk ke ke k sk sk ok /

void initialize() { /* allocate & initialize network array storage */
committee *pc; /* pointer to current committee of network x/
tlu *pt; /* pointer to current tlu of committee */
element  *pe, /* pointer to current element of tlu */

X; /* current initialization weight value */

13
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int c, /* committee index in network
t, /* tlu index in committee */
e; /* element index in tlu */

printf("\ninitializing"); /% say what’s taking so long !
dim=patwide*pathite+1; /* number of elements in a tlu

pattern=(vector)calloc(u(dim), /* allocate the pattern
u(sizeof (element))); /* vector */

class=(boolean *)calloc(u(ncom), /* allocate the class array
u(sizeof (boolean))); /* which will contain the
* desired decision bits
* from the committees,
as read from the training
file. the actual verdict
of the network will be
compared with this to see
if training is required.

* ¥ X X %

*/

vote=(int *)calloc(u(ncom), /* allocate the votes array
u(sizeof (int))); /* which will contain the
* count of votes for each
* committee.

x/
decsn=(boolean *)calloc(u(ncom), /* allocate the decision
u(sizeof (boolean))); /* array which will contain

* the bits of the answer,
* on bit per committee.

*/
pc=net=(committee *)calloc(u(ncom), /* allocate the network
u(sizeof (committee))); /* as an array of committees */
forall(c,ncom) { /* for all committees in the network...
pc—>wtpt=pt=(tlu *)calloc(u(ntlu), /* allocate a committee x/
u(sizeof(tlu))); /* as an array of tlu’s */
pc++->dot=(DOTYPE *)calloc(u(ntlu), /* together with dot */
u(sizeof (DOT))); /* product save cells  */
forall(t,ntlu) { /* for all tlu’s in the committee... */
pe=*pt++=(element *)calloc(u(dim), /* allocate a tlu x/
u(sizeof (element))); /* as an array
* of elements
*/

forall(e,dim) { /* for each weight... x*/
if (radius==0) *pe++=(e!=0); /* grow connections? */
else { /* or adjust weights? */
x=eabs (*pe++=init_val( /* adjust, get initial */
(element)radius));/* weight value */
if (x>maxel) maxel=x; /* update max magnitude */

}

*/

*/

*/

*/

*/

*/

*/

*/

14
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~
*

initialize each element to a random value such that the
average radius, or distance from the origin, of each
weight point is ’radius’. this will produce a
distribution of weight points clustered near the
surface of a hyper-sphere as the starting condition.

If the radius is zero, the all weights will be set

to zero except for the threshold setting weight. This
is analogous to forcing the program to grow new
interneural connections on an as needed basis,

* ¥ X X X X X X X *

supposedly just like the real brain does!

*
~

}

printf("\n"); /* perform new-line when initialize is done */

/oK sk sk ok ok ok ok ok sk sk ok ok o ok ok ok sk sk sk sk ok ok ok o o ok ok ok sk sk sk sk ok ke ok o o o ok ok ok sk sk sk sk ok ok o ok ok o ok ok sk sk sk sk ke ok ok o o ok ok sk ok sk sk ok ok ok
*
* DOTPROD -- Form A Dot Product
*
sk ke ke ook sk ok ok ko ook sk ko ok sk ko ook ok sk sk ok ok ok sk o ook sk sk sk sk kK sk o o o sk ok sk ok k ok ok ko sk sk ok ok sk ok ok ok s ok ok ok ok /

DOT dotprod(x,y) /* form the scalar product of two vectors  */
vector X,y; /* both arguments are vectors x/
{
DOT z=0; /* result accumulator, initialized to zero */
int i; /* element index, used as loop counter */
forall(i,dim) /* for all elements in each vector... */
z+= (*kx++) x (ky++) ; /* compute the dot product */
return(z); /* return it to the caller */
}

/3% e ok sk sk ke ok sk e ok k ko sk sk ok o ok ko 3 o ok ok ok ke k ok sk sk e o sk sk o ok sk e o sk ke o ok sk ok e ok sk ke o sk sk o ok k ok o ok ok k ok ok ok
*
* READ CLASS -- Read The Class Tag
*
sk ook sk e ok ok sk e ok sk o ok ok sk o ok ok sk o ok sk ok ke sk ok ok s ok sk ok ok sk ok 3 e ok sk ok o ok ok sk ok sk kK e ok sk 3 o ok ok ke k ok ok ok s ok ok ok k ok ok ok /

boolean read_class() { /* read the class tag number for the image */
int i, /* loop counter for index in class array x/
tmp; /* temp cell to hold decimal category x/
boolean *pcl=class; /* pointer to class (category) array x/
if (fscanf (pat,"%d",&tmp) !=1) /* read the pattern category x/
return(FALSE) ; /* return FALSE for end of file */
forall(i,ncom) { /* for each committee in network */
xpcl++=tmp&1; /* extract desired committee output */
tmp>>=1; /* advance to next committee x/
}
xpcl=1; /* augment with a 1 to prevent singularity */

pats_so_far++; /* update pattern sequence counter */

15
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return (TRUE) ; /* return TRUE if class read successfully */

K3k s ok sk sk ook sk e ok ok ok ook sk sk ok sk sk ok 3 ok sk sk ok ok sk 3 3 ok sk sk s ok ok sk o ok ok sk o ok sk ko sk ok sk s ok sk ok 3 ok ok ok o ok sk k o ok ok ok ok ok ok
*
* READ PATTERN -- Read Next Pattern
*
st e ok sk e ok ok sk e ok o o ok ok sk e o ok sk s ok ok ok e sk ok ok s ok sk K ook ok e ok sk k3 e ok ok ok sk sk ok 3 e ok sk o ok ok ke k ok ok ok e ok sk ok ok ok /

boolean read_pattern() { /* read next pattern from training file x/
int i,j; /* loop counters for row & collumn of image */
element *pe=pattern; /* pointer to element of pattern vector */
float tmp; /* temp cell for input conversion */
forall(i,patwide) /* for each row in the image, */

forall(j,pathite) /* for each pixel in that row, */
if( fscanf(pat,"%f",&tmp) /* input value of pixel */

'=1 ) return(FALSE); /* return FALSE if end-of-file x*/
else xpe++=(element)tmp; /* convert to type element */
return( read_class() ); /* read in it’s class as an array

of correct decisions for each
committee in the network.

£
L3
L3
* if the entire pattern is read,
* together with its class,

* then return TRUE

*/

sk sk sk ok ok ok ook sk sk ok ok s o ok ok sk sk ki sk ok ok o o ok o ok sk sk sk sk ke o o o ok ok sk sk ki ok ok k o o o ok sk sk ok sk ok ke ok ok o o o ok sk ok ok sk ok ok ok
*
* COUNT VOTES -- Count The Votes
*
sk e ook sk ok ok ko ook sk ko ok sk ko ook ok sk sk Kok ok sk o ook sk sk sk sk ok ok ok o o o o sk ok sk ok k ok ok 3 o o sk ok ok ok ok ok ok ok s ok ok ok /

int count_votes(pc) /* count the votes for each tlu in a committee x/
committee *pc; /* second parameter is a pointer to committee */
{
DOT *pd=pc->dot; /* dot product save cell pointer x/
tlu *pt=pc->wtpt; /* tlu pointer x/
int ti, /* tlu index (loop counter) */
count=0; /* the count of votes for the committee */
forall(ti,ntlu) /* forall tlus in committee */
count+=sign( /* count votes as + or - x/
*xpd++= /* & save dot product as x/
dotprod (*pt++,pattern) /* weight point dotted with */
) /* pattern vector */
return(count) ; /* return tally x/
}

/) ke ok ks ks ke ks ks e ke e ks ek o sk e ko s sk ko ks sk ke sk ok s ok sk sk e ke ok sk ok sk e ke ks ek sk e ko ks sk sk
L3
* RECOGNIZE - Recognize A Pattern

16
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*
************************************************************************/

void recognize() { /* recognize a pattern by taking the decision
* of each committee to be a bit in the category
* number for the pattern

*/
int i, /* loop counter x/
xpv=vote; /* pointer to vote count array */

boolean *pdec=decsn;/* pointer to decision array.
* this holds the decision bits for each
* of the committees in the network.

*/
committee *pc=net; /* pointer to current committee in network x/
forall(i,ncom) /* for all committees in the network... */
xpdec++=alpha(*pv++=count_votes(pc++)); /* how many votes 7 x/
}

[ koo ko sk ok oo ok ook ok ok ook sk ok ook ok ko sk ok o oo sk ok oo sk ok oo ok ok ok sk ko ok ok ook sk ok ook sk ok o o ok ok o ok ok o o
L3
* $GET WEAK TLU -- Sway Which One 7
*
ok o K oo K o K oK oo ok oK o o ok ook K o oo sk ok ok ok o sk ok o o sk ok ok ook sk ok K ook K ok ook ok ok o ok sk ok o o ok ko ook sk ok ok ok /

int get_weak_tlu(ci) /* choose tlu most vulnerable to be swayed x/
int ci; /* argument is committee index x/
{
int weak=0, /* index of weakest tlu so far */
sv=isign(vote[ci]), /* sign of committee’s vote x/
ti; /* tlu index */
DOT #*pd=(&net[ci])->dot, /* pointer to dot product array x/
conviction=INFINITY, /* lowest conviction so far */
d; /* saved dot product value x/
forall(ti,ntlu) { /* for all of the tlu’s in this committee... */
d=pd[til; /* get the saved dot product value */
if (sign(d)==sv) { /* if tlu voted incorrectly x/
if (eabs(d)<conviction) { /* and if this tlu has the

* least conviction of any
* that have been examined

* so far,
*/
weak=ti; /* then remember it as the best one so

* far to adjust to sway the vote of this
* committee

*/

conviction=eabs(d) ; /* update lowest conviction x/
}
}
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}

return(weak) ; /* return subscript of weakest tlu in committee */

/3K 3% e ok sk sk ook sk e ok sk sk e ok sk sk o sk ok k3 ook ke ok ok ok ok sk sk e o sk sk s ok sk sk e o sk sk e sk sk ok e ok sk ok ok sk ok o ok sk ok o ok ok kK ok ok
%
* ADJUSTMENT -- Correction Coefficient
*
st e ok ok e ok ok sk e ok sk o ok ok o ook sk s ok sk ok e sk Kk s ok sk K o sk ok s ok sk k3 e ok ok sk ok sk sk ok 3 e ok sk o ok ok ke k ok ok ok s ok ok ok ko ok ok /

element adjustment(ci,ti) /* compute correction coefficient x/
int ci, /* committee index */
ti; /* tlu index */
{
DOT d=(&net[ci])->dot[ti]; /* saved dot product x/
if (corr_incr) /* fixed increment correction  */

return(corr_incr*sign(d));

if (absolute) /* absolute correction */
return((int) (d/patmag)+sign(d));

if (fraction) /* fractional correction */
return(d*fraction/patmag) ;

abort ("No correction method specified."); /* nobody told us
* what kind of
* correction to
* perform !
*/
return(0); /* to keep compiler happy :-) */

/3K ke o s o s ke s e ks ke ks o e s ks s o o o ks o ks o e o e e ke sk ke sk sk s o e ke o e o ke o
L3
* ADJUST - Change TLU’s Weights
*
sk oo sk o koo o o ko ok o e o sk sk e ok o ko o ko e o sk ke ok e ko ok sk o sk sk sk ok o /

void adjust(ci,ti) /* adjust the weights of a single tlu */
int ci, /* committee index */
ti; /* tlu index */
{
vector pw=(&net[ci])->wtpt[til, /* pointer to a weight x/
pp=pattern; /* pointer to a pixel x/

element lambda=adjustment(ci,ti), /* the correction coefficient  */
wt,awt; /* temps for max weight point */

int i; /* element index & loop counter */
tlus_trained++; /* count adjustment of tlu x/

forall(i,dim) { /* for each coefficient */
wt=(*pw++) -=lambda* (xpp++) ; /* adjust weights */
awt=eabs(wt); /* save magnitude */
if (maxel<awt) { /* new maximum 777 */
maxel=awt; /* yes, update max elem */

18
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if(log_level) { /* if any logging,*/
printf ("\nmaxel=%f",/* then display the */
(float)maxel) ; /* new maximum value */

}
}

if(log_level>=3)
printf ("\n com=%d tlu=Yd lambda=%g",
ci,ti, (float)lambda);
}

/************************************************************************

%

* SWAY TLUS -- Sway TLUs To Change Vote

*

************************************************************************/

void sway_tlus(ci) /* sway enough tlu’s to change the vote

int ci; /* parameter is committee index
{
int i, /* loop counter
lost_by=iabs(vote[ci]/2)+1, /* how many votes we lost by x/
weak_tlu; /* weakest wrong tlu in committee x/
DOT *pd=(&net[ci])->dot; /* pointer to dot product array

forall(i,lost_by) { /* do this enough times to sway the vote...

weak_tlu=get_weak_tlu(ci); /* find most vulnerable tlu */
adjust(ci,weak_tlu); /* adjust its weights to change

* its mind about the pattern

*/

pd[weak_tlu]=-sign(pd[weak_tlu]); /* flip sign of dot product
* so this tlu won’t be
* considered again in this
* loop
*/
}

*/
*/

*/

*/

*/

/************************************************************************

%

* SHOW BITS -- Display Bits O0Omn CRT

%

************************************************************************/

void show_bits(ps,pb) /* display a bit vector on the screen

char *ps ; /* the label for the bit vector
boolean *pb; /* the pointer to the bit vector
{
int i, /* loop counter
k=1, /* power of two x/
v=0; /* value accumulator */
forall(i,ncom) { /* for all committees

if (*pb++) v+=k; /* convert binary to decimal x/

*/
*/
*/

*/

*/
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k<<=1; /* advance to next bit */

}

printf (" %s %hd",ps,Vv); /* display label and value x/
}

/3K 3k e ok sk sk ook sk e ok sk sk e ok sk sk ook ko 3 ook sk ok ok k ok sk sk e o sk sk s ok sk sk e o sk sk e sk sk k e ok sk ok ok sk ak o ok sk k s ok ok ok k ok ok
*
* TRAIN -- Train The Network
*
st e ok sk e ok Kk ook o ok sk o o sk o o ok Kk e ok ko o ok ok ke o sk ok o e ok sk ke o sk sk o ok sk k e ke ok ko ok k ke ok ok k ok ok ok ko ok ok /

train() { /* train the network to recognize the pattern x/
int ci; /* committee index x/
goofed=FALSE; /* give benefit of doubt -- assume didn’t goof */
patmag=dotprod(pattern,pattern); /* find pattern magnitude */
forall(ci,ncom) /* for all the committees in the network... */

if (decsn[ci] '=class[ci]) { /* if the committee goofed up, */
goofed=TRUE; /* then say so, x/
pats_missed++; /* count misrecognized pattern, */
sway_tlus(ci); /* and change enough tlu’s

* so it won’t goof up on this
* pattern next time !

*/
}
if (goofed) { /* did we goof? x/
missed++; /* yes, count the boo boo! */
if (log_level>=2) { /* if detail requested, x/
printf ("\n"); /* start a new line */
show_bits("siloam ",decsn); /* show machine’s decision */
show_bits("really ",class); /* display what really is  */
}
}
}

] 3k 3k sk sk ke ok o ok sk sk sk sk e ook o sk sk Kk Kk ko o o ook sk sk sk 3k kK o o o ok ok ok sk sk Kk ke o o o ok sk ok sk sk ke k ok o o ok ok ok ok k kK K
*
* TOTCONS - Total Number 0f Connects
*
sk ke ke o ok sk kK o ook ok kK Kk ko o o ok ok sk kK K Kk ke o ook sk sk 3k sk K K kK o o o o ok ok sk ok Kk K o o o ok ok ok ok ok k kK kK o ok ok ok ok /

int totcons() { /* count total # of connections */

committee *n=net; /* neural network pointer */
tlu *xc,/* committee pointer */
t; /* tlu pointer */
int 1i,j,k,/* loop indices */
no=0; /* totalizer accumulator */

forall(i,ncom) { c=n++->wtpt; /* for each committee... */
forall(j,ntlu) { t=*c++; /* for each tlu in the committeex*/
forall(k,dim-1) /* for each element in the tlu */
if (*t++!=0) no++; /* count it if it is connected */

}
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return(no); /* return the count */
/o s sk ok o ok o ok o o o o o o o ok ok ok sk sk sk sk sk sk sk o ok ok o o o o o ok ok ok sk sk sk sk sk ok sk o o o o o o o ok ok ok ok ok sk sk sk ok sk ok ok o o o o o
*
* SILOAM Dutside Control Structure
*

s ko o ok o o ok ok o s o ok o KR o K K o o K ook K o oK K o K K oo o o ok K ok o o sk ok o sk ok o sk ok o sk o sk o ko sk ok ok ok ok /
void siloam() { /* outside control structure for pattern recognizer */

long start,stop; /* timer value cells for benchmarking x/
int cons,new,0ld=0;/* connection counters */

read_header () ; /* read header information in the training file */
initialize(); /* allocate the committees of TLUs and
* initialize the weight points randomly
*/
radius_statistics();/* print starting radius statistics x/
npass=0; /* initialize pass counter x/
start=time(0); /* remember start time *x/
do { /* start over in training file,
* we made a mistake...
*/
missed=0; /* reset misrecognition counter */
read_header(); /* rewind training file
* and skip over header information...
*/

while(read_pattern()) { /* keep reading patterns until we’ve
* done the entire training file and
* recognized them all successfully

*/
recognize(); /* attempt to recognize the pattern */
train(); /* adjust any weights necessary to get
* the correct recognition if we goofed
*/
if (goofed&&start_over) break; /* select training strategy */
} /* end of while loop to read next pattern  */
npass++; /* increment pass counter */
if (log_level>=1) { /* give pass summary report */

cons=totcons(); /* count the connections */

new=cons-old; /* compute how many new ones */

old=cons; /* remember for next time */

printf ("\npass # Jd missed %d cons=/d new=%d",
npass, missed, cons, new) ;
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} while(missed); /* end of do loop to train network x/
stop=time(0); /* get stop time x/
[FFdckksokkookkdkockkk print end of run summary kskskokskoskskokskskokskoskokoksk ok ok kokkkok ok /

printf ("\n");
printf ("\ntraining completed in %1d seconds.\n",stop-start);

printf ("\nnumber of committees: ¥%d",ncom );
printf ("\nnumber of tlus total: ¥%d",ncom*ntlu );
printf ("\nnumber of elements: %d" ,ncom*ntlu*dim );
printf ("\nnumber of connections: %d",totcons() );

printf ("\n");

printf ("\nnumber of passes thru file: J%d",npass);

printf ("\nnumber of patterns in file: ’%d",pats_so_far );
printf ("\nnumber of mis-recognitions: %d",pats_missed );
printf ("\nnumber of tlu adjustments: %d",tlus_trained);
printf ("\nmaximum element magnitude: %f",(float)maxel);
printf ("\n");

radius_statistics(); /* print ending radius statistics x/

/] 3k ke ke ok ok o o o o o o o o o o sk ke ke sk Kk sk sk sk sk o o s o o o o ek ke k kK K ok sk sk ok o o o o o ok o kK ok kK ak sk ok ok ok ok ok o ok o o K
*
* MAIN Program Starts Here
*
sk K K K K KKK K KKK Kok ok o oo o o o o ok kK Kok Kok ok ok ok ok o o o o o K Kk kK sk ok ok ok ok ok ok o o o ok ok k ko /

main(paramct,params) [H*kkkkkkkk*k main program entry point xkkskokkskoksiokkk/
int paramct; /* number of parameters on command line x/
char *params[]; /* array of pointers to strings for each param */
{

int i; /* array index variable x/

[ Rk kskkkokkkdkkokokkkk identify the program sokskskskokskokskskoksok ok kokkokokokk /
banner () ; /* print program name, version, & release date */
printf ("\nInvoked By:"); /* show how the program */
for(i=1;i<=paramct;i++) printf(" %s",params[i]); /* was started up! */
printf ("\nelement type is %s",eltype); /* show arithmetic used */
printf ("\n");

[¥scksdokkdokkokdokkkokkkokkokk parse the command line sskdkokskokskskokskokskskokskkokskkokoksk /

if (paramct==1) help(); /* if no params, then give help and quit ! */

patname[0]=0; /* else set pattern filename to null string */
for (i=1;i<paramct;i++) { /* for each parameter... x/
if (?-’==params[i] [0]) /* is it an option ? */

switch(toupper(params[i][1])) { /* yes, which one 7 x/
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kase(’0’,start_over=TRUE) /* strategy x/
kase(’L’,log_level=atoi(&params[i] [2])) /* log detail =x/

kase(’T’ ,ntlu=atoi(&params[i] [2])) /* # of TLUs x/

kase(’R’ ,radius=(element)atof (&params[i] [2])) /* init radius */
kase(’I’,corr_incr=atoi(&params[i] [2])) /* fixed incr  x/

kase(’A’ ,absolute=TRUE) /* absolute */

kase(’F’ ,fraction=atof (&params[i][2])) /* fractional =x/
}

[Fsksorkokkookiokkokkkok parse filename sksksksokskkoksokskkokskokskookskdoksk ok sk /

else if (index(&params[i][0],’.’)) /% is ’.’ in it? x/
move (&params[i] [0] ,patname) ; /* yes, pattern file x/

else move(".PAT", /* no, default extension is */
move (&params[i] [0] ,patname)); /* ’.pat’ for pattern file */
}

/Hkoxskokskokskokokkkkokkk check for command 1line errors sskokskskokskokskoksk sk ok skok sk okkkokk /

if (patname[0]==0) /* check for missing pattern file name x/
abort(
"pattern filename not specified!");

if (ntlu==0) /* check for missing number of TLUs x/
abort (
"number of TLUs per committee not specified!");
[ Fksoksk ok okt Rk kokkdkok Rk open pattern file sk ko ok ok ok /
if (! (pat=fopen(patname,"r"))) /* if open fails, abort x/

abort (
"can’t open pattern file!");

/***xkx*k*xxx perform the training and recognition algorithm kskkksisk*kkk*/

/* srand(1); x*/ /* make random number generator repeatable --
* ...this may be removed, if desired, after the
* debug phase is complete!
*/
siloam(); /* call the outside control structure for the
* trainable pattern recognizer.
*/

Alphabet Pattern Training Set

hdr 5 15 28
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